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Chapter 9:  Scaling point/plot measurements of greenhouse gas fluxes, balances and 
intensities to whole-farms and landscapes 
  
Todd S. Rosenstock, Mariana C. Rufino, Ngonidzashe Chirinda, Lenny van Bussel, Pytrik 
Reidsma, Klaus Butterbach-Bahl 
  
Abstract 
Measurements of nutrient stocks and greenhouse gas (GHG) fluxes are typically collected at 
very local scales (< 1 to 30 m2) and then extrapolated to estimate impacts at larger spatial 
extents (farms, landscapes, or even countries). Translating point measurements to higher levels 
of aggregation is called scaling. Scaling fundamentally involves conversion of data through 
combination or interpolation and/or simplifying or nesting models. Model and data 
manipulation techniques to scale estimates are referred to as scaling methods. In this chapter, 
we first discuss the necessity and underlying premise of scaling and scaling methods. Almost all 
cases of agricultural GHG emissions and carbon stock change research relies on disaggregated 
data, either spatially or by farming activity, as a fundamental input of scaling. So, we then 
assess the utility of using empirical and process-based models with disaggregated data, 
specifically concentrating on the opportunities and challenges for their application to diverse 
smallholder farming systems in tropical regions. We describe key advancements needed to 
improve the confidence in results from these scaling methods in the future. Resources to 
familiarize readers with the scientific theory underlying scaling methods—e.g., hierarchy theory 
in ecology—as well as to help implement the approaches surveyed in the text are available on 
the website associated with this chapter. 
  
9.1 Why estimate GHG impacts at whole-farm and landscape level? 
There is an urgent need for information on GHG balances and the GHG intensity of agricultural 
products (e.g., emission per unit product) at levels where livelihood and environmental impacts 
occur and land management decisions are being made. But even in smallholder farming 
systems where decisions are taken on fields and farms that are usually less than one hectare, 
this decision-scale is substantially greater than the scale at which changes in GHG fluxes take 
place or are measured, often that of microns and meters (Butterbach-Bahl et al., 2013). On the 
one hand, soil moisture affects oxygen available to microbes at the soil aggregate level driving 
denitrification (the conversion of NO3

- to N2O principally by facultative anaerobic bacteria) but 
the percentage of water filled pore space is regulated by precipitation and soil tillage—events 
correlated at greater spatial extent. On the other hand, heterogeneous distribution of 
decomposing residues from the previous harvest may lead to formation of denitrification and 
N2O hotspots at the cm scale, thereby triggering changes in the magnitude and spatial 
variability of fluxes even at plot scale (Groffman et al., 2009). In practice, land-based mitigation 
actions require a lower resolution of information than that needed to explain the processes 
driving GHG emissions at the soil-plant-atmosphere interface.  
 
Furthermore, GHG fluxes are typically measured at locations or ‘points’, intended to be 
representative of a larger area. Independent of source, sink or molecule, GHG measurements – 
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for example chamber measurements of fluxes - are conducted on only a fraction of the area or a 
few of the landscape units because of costs and complexity (Rufino et al. Chapter 2; 
Butterbach-Bahl et al. Chapter 5). When attempting to understand landscape or regional GHG 
fluxes or consider mitigation options, it is therefore necessary that these point measurements 
are translated to larger extents where effective and meaningful mitigation actions can be taken.    
 
‘Scaling’ GHG flux measurements underlies GHG accounting (e.g., national inventories), and 
forms the basis for policy analysis (e.g., marginal abatement cost curves), development 
strategies (e.g., low emission development), and even simple testing of mitigation options (e.g., 
comparing impacts of one practice versus an alternative). Thus, it is important to understand 
basic principals and terminology that pertain to scales and scaling, to avoid confusion in 
discussions and analysis. Scale refers to the spatial or temporal dimension of a phenomenon 
(van Delden et al. 2011; Ewert 2004). Scaling refers to the transfer of information between 
scales or organizational levels (Blöschl and Sivapalan 1995). Scaling methods refer to tools 
required to accomplish scaling. This chapter is concerned with understanding the theory and 
practice behind scaling methods as applied to GHG measurements and impacts. 
 
9.2 Scaling methods 
Most scaling methods are grounded in ecological hierarchy theory. Hierarchy theory provides a 
conceptual framing for scaling in that it structures systems as nested levels of organization 
(Holling, 1992). Components are arranged within higher levels; for example, a field is part of a 
farm that can be thought of as part of a landscape, spatially heterogeneous areas of interacting 
patches of ecosystems (Figure 1). Scaling methods rely on this conceptual framing to infer 
relationships between attributes and to translate values derived from point measurements into 
estimates across scales.  
 
Scaling methods can be categorized into two groups: (1) manipulation of data or (2) 
manipulation of models (Volk & Ewert, 2011). Approaches that manipulate data extrapolate, 
interpolate, or average sampled input data (i.e., point measurements) or output data to 
generate estimates at larger scales (Table 1). National Greenhouse Gas Inventories that use 
IPCC Default Tier 1 Emissions Factors (IPCC 2006) are an example of a scaling method that use 
a data manipulation approach, namely aggregation or disaggregation. Agriculture is 
disaggregated into farming activities and their extents (e.g., size of cattle population or tons of 
nitrogen fertilizer applied) for which a coefficient or empirical model derived from point 
measurements of the relationship between that activity and GHG flux (i.e., empirical model) is 
then used to calculate emissions at national or sub-national levels. Data manipulation 
approaches are among the simplest approaches to implement, especially in regions and for 
production conditions where data are sparse. However, since data manipulation approaches 
generally neglect heterogeneity in GHG emissions and underlying physico-chemical and 
biological processes, estimates may not represent observed fluxes well (Figure 2). But in most 
cases for developing countries, the accuracy of using such methods is unknown because there 
are insufficient data to evaluate the variation of source events (input data) or the accuracy of 
outputs (Del Grosso et al. 2008). The ability to generate accurate predictions at larger temporal 
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or spatial scales by manipulating data depends on (1) representative sampling of the 
disaggregated GHG source/sink activities and (2) the availability of a reasonable model, 
empirical or process-based to scale input data. Recently, more sophisticated approaches for 
disaggregation of national, landscape or farm components can help improve estimates because 
of the better representation of the heterogeneity (Hickman et al. 2015, Rufino et al. Chapter 2). 
 
The alternative to manipulating data is to modify existing models to be relevant at larger spatial 
scales. This has been successfully done for national scale soil carbon monitoring in the US, 
where an integrated data collection and biogeochemical process-based model (DAYCENT) 
predicts changes in soil carbon stocks (Spencer et al., 2011). But other examples for agricultural 
GHG impact assessments remain scientific exercises (see Perlman et al., 2013 for national scale 
N2O assessment). Approaches to manipulate models change model structure to account for the 
availability and resolution of input data and to make them computationally tractable. 
Reformulation of model structure (not creating of new model) can result in a reduction of 
parameters (e.g., macroecological models of functional traits) or simplified model functional 
forms (e.g., empirical equations derived from multiple runs of process-based models). An 
important consideration is that scaling by modifying models introduces a lot of uncertainty: 
uncertainty in the quality and quantity of input data, uncertainty of datasets used to test 
models, and uncertainty related to model structure and parameters in the revised models. 
 
Theory supporting the manipulation of data and models as well as potential errors/uncertainties 
in outcomes is reviewed in the integrated assessment literature (e.g., Ewert et al., 2011; Volk & 
Ewert, 2011). The process of selecting representative sampling points by various stratification 
methods (e.g., spatially, land cover, farming activity, etc.) are covered in Chapter 2 and 
measurements techniques for various fluxes and productivity are covered in Chapters 3-8 and 
thus in the next section here, we discuss the two methods most commonly used to scale up 
point measurements of disaggregation/aggregation data using empirical and process-based 
models. Empirical models are usually relatively simple statistical functions constructed based on 
relationship between occurrence of activities or external events, farming or e.g. rainfall, and 
monitored responses in the magnitude and temporal and spatial variability of GHG fluxes. By 
contrast, process-based models are built upon our current theoretical understanding of GHG 
emissions underlying physic-chemical and biological processes. They represent current 
understanding of complex processes and interactions of carbon, nitrogen and water cycling at 
ecosystem scale to simulate the mechanisms that control GHG fluxes, though part of the 
algorithms is often still empirical and represent apparent flux responses rather than the 
underlying process. Unlike empirical models that require calibration each time they are used, 
one assumes that the simulated processes are universal and, thus, that based on a number of 
site tests, they might be applied as at sites with different agro-ecological regime for which they 
have not previously been calibrated. In the following, we briefly describe these two 
approaches, their applicability for smallholder systems, representation of the landscape units, 
technical demands of the process, and sources of uncertainty. 
  
9.3 Using empirical and process-based models with disaggregated data 
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Empirical models 
Empirical models for scaling GHGs are based on statistical functions that relate land 
management ‘activities’ such as extent of a land cover type, amount of fertilizer applied, or the 
number of head of livestock to nutrient stocks, stock change to GHG emissions or 
sequestration. Carbon stock changes, and greenhouse gas fluxes can then be calculated based 
on two types of input data: (1) that describes the occurrence of activities (so called ‘activity 
data’) and (2) the average effect that activity has on a nutrient stock or flux in question 
(‘emission factors’) (eq 1). 
 

𝐺𝐻𝐺 =    𝐴! ∗ 𝐸𝐹!!
!                                                               (1) 

                                                                                                    
where, GHG equals the stock (mass) or flux (rate: mass per unit time), sequestration or balance 
in units of C, N or an integration of the two (CO2 eq); A represents the extent (area) over which 
an activity occurs and EF is an emissions factor (e.g., a constant rate relative to the specific 
activity: mass per unit time per unit area). Summation of GHG fluxes or stock changes across N 
activities (sources/sinks) generates a cumulative balance for the selected area. This approach is 
analogous to a linear aggregation scaling method based on measurements or estimated values.  
 
The most widely applied empirical models for scaling GHGs are contained within the IPCC 
Guidelines for Greenhouse Gas Accounting (IPCC, 2006c). The IPCC Guidelines define global 
(Tier 1) and, sometimes regional emissions factors (Tier 2) for GHG sources and sinks such as 
the methane produced by enteric fermentation per head of cattle or the amount of nitrous 
oxide resulting from application of nitrogenous fertilizers. Persons interested in GHG 
quantification can multiply these values and the provided equations with locally relevant data 
on farm and landscape management activities to generate estimates of individual source and 
sink strength or cumulative GHG balance. Application of emission factors and empirical models 
is the foundation of national greenhouse gas inventories and data (Tubiello et al., 2013) and is 
becoming more common for landscape GHG accounting including ex-ante climate change 
mitigation project impact assessments (Colomb & Bockel, 2013). 
 
IPCC Tier 1 default emission factors are based on both empirical data and expert opinion. In 
some cases, emissions factors are derived from analysis of 100s or even 1 000s of 
measurements of the source activity and the rates of emissions. For instance, IPCC default 
emissions factor for nitrous oxide emissions from nitrogen fertilizer use (1%) are based on the 
database of nearly 2 000 individual measurements from studies conducted around the world 
(De Klein et al., 2006; Stehfest & Bouwman, 2006), though distribution of studies are biased 
toward measurement campaigns conducted in Europe and North America. But this is not true 
for all activities. Other emission factors are estimated based on very limited data (e.g., single 
values for carbon stocks in agroforestry systems) or expert opinion, (e.g., emission factor for 
methane emission from enteric fermentation is based on modeled results not measurements for 
Africa) (IPCC, 2006a, 2006b). Global default emissions factors are published in the National 
Guidelines for Inventories while other regionally relevant emissions factors are available in the 
IPCC Emissions Factor database, peer reviewed literature and in the future will be made 
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available through the SAMPLES web platform.  
 
Empirical models are typically thought to generate reasonable approximations of GHG fluxes at 
higher levels of organizations and large spatial extent (Del Grosso et al., 2008), presuming the 
activity data are well constrained. This is because it is thought that at large scales such as across 
countries, the departure of actual fluxes—because of edaphic conditions driving variability—
from average emissions factor values will average out with aggregation of multiple land units. 
But for any local scale—e.g., farms, where local environmental and management heterogeneity 
of conditions are not well represented in the global datasets, applying empirical models and 
emissions factors may represent a significant departure from actual fluxes (Richards et al. in 
review).  
 
The relevance of using empirical models for farm-scale estimates of GHG balances is untested 
and perhaps spurious, especially for farming systems in developing country. IPCC guidelines 
using Tier 1 default factors were not designed for this purpose. Tier 1 approaches were 
intended to be used when the source activity was relatively inconsequential to total GHG 
budgets, perhaps contributing less than five percent of the total (IPCC 2006). Furthermore, 
significant variations in GHG flux rates occur between point locations due to edaphic 
mechanisms that control biological emission processes. Because observations of GHG fluxes for 
tropical smallholder farming systems are scarce or nearly missing in available databases, Tier 1 
default factors may considerably misrepresent flux rates for such systems. In view of the low use 
of N fertilizers and potential nonlinear response of N2O to increasing N addition, it is therefore 
not surprising that many of the N2O fluxes currently being measured in sub-Saharan Africa are 
1/3 to 1/2 those obtained using the Tier 1 IPCC emission factors (Hickman et al., 2014, 
Shcherbak et al. 2014). Furthermore, there are strong indications that the response of soil N2O 
emissions to fertilizer applications is not linear – as assumed by the IPCC-EF approach – but 
exponential, with no significant change in emissions at low (<50-100 kg N) fertilizer application 
rates (Shcherbak et al., 2014; Van Groeningen et al., 2010). In consequence, using IPCC 
standards would currently lead to overestimate the impact of agriculture in Africa on the global 
atmospheric N2O budget. A comprehensive evaluation of Tier 1 emissions factors relating to 
GHG impacts measured in tropical regions is currently lacking. Despite these concerns, 
disaggregation of whole-farms into component activities and applying available empirical 
models remains a way to estimate relative impacts of smallholder farming activities at the 
whole-farm level (Seebauer, 2014), though the results are highly uncertain. However, such 
estimates can be used to understand uncertainties around GHG balances and intensities and 
can generate hypotheses to identify important research gaps. 
 
Emissions from livestock production in the tropics, namely from enteric fermentation and 
manure management, present their own challenges due to data scarcity. Similarly to soil fluxes, 
emissions from both sources are poorly constrained and according to the review by Owen and 
Silver (2015) data for dairy manure management are nonexistent in Africa and extremely scarce 
for other systems (Predotova et al. 2010). Yet in many countries, these sources are thought to 
be substantial fractions of the total GHG budgets. For example in Africa, methane from enteric 
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fermentation and emissions from manure deposited on pasture represents roughly 40% and 
28% of annual GHG emission (FAO 2015). However, there are almost no data that quantify 
emissions from either source despite our knowledge that the drivers of emissions (e.g., feed 
quality and quantity and C and N content of manure) are known to differ significantly from 
where emissions factors have been produced.  
 
An additional issue—besides poorly constrained emissions factors—is limited knowledge of 
farm management practices (A in equation 1) and limits the use of empirical relationships and 
models for calculating fluxes. Many developing countries have poorly defined record keeping 
and reporting schemes about e.g. organic and inorganic fertilizer use, manure management, 
crop rotations etc. and so there is limited information on the extent of land management 
decisions (Ogle et al., 2013). This adds another source of uncertainty (in addition to emission 
factors themselves). Valentini et al. (2014) report that estimates of the extent of various land 
cover in Africa can be from 2.5% to 110% different depending on the data source, either using 
inventory sources or satellite imagery (Valentini et al., 2014). Other evidence from data 
collection methods suggests that the uncertainty in activity data is similar to that of emission, 30 
to 80% (Figure 3, Seebauer, 2014). New practices have been developed to help developing 
countries better represent the activities in their agricultural landscapes (Tubiello et al. 2013). 
However, incentives to improve and standardize data collection and archiving efforts are 
limited. 
 
Simplicity and transparency are the largest benefits of using data (dis)aggregation techniques 
and empirical models for scaling GHG estimates. The models represent relationships that are 
easy to understand and implement, which makes them accessible to next users without 
requiring much technical expertise. This has led to a wide range of greenhouse gas calculators 
being created, including: Cool Farm Tool, Carbon Benefits Tool, etc. (Colomb & Bockel, 2013). 
These tools make it possible for non-specialist to perform calculations and generate estimates 
of greenhouse gas balances with relatively little data or effort. The question, that remains to be 
answered, is whether the estimates produced by such tools provide robust values—either in 
terms of absolute or in terms of relative changes between two systems of at different  scales 
(Figure 2).  
 
Process-based models 
Empirical models are only one way to scale manipulated data, however. Process-based models 
are also used. For example Bryan et al. (2011) average household data for seven counties and 
four agroecological zones in Kenya and use a process-based model to predict changes in 
methane emissions from enteric fermentation and revenue with improved feeding practices 
(Table 2). Process-based models consist of equations implementing current scientific 
understanding of the mechanisms determining system properties. Even though microbial and 
physico-chemical processes involved in GHG emissions from soils are implemented with various 
levels of detail in different biogeochemical models, equations are often based on empirical 
observations or represent apparent changes in production rates or microbial activity due to, for 
example, changes in environmental conditions such as changes in moisture and temperature. 



	
   7 

Thus, models describe a system consisting of components such as soil physics and energy 
fluxes, vegetation biomass development, or soil microbial C and N turnover and their 
interactions, which are represented by the equations describing states and rates at different 
points in time (temporal resolution). Process-based GHG models are designed to run at source 
scale (e.g., site or animal) after being calibrated based on observed relationships in controlled 
experiments and monitoring data. Because the equations represent principal microbial, 
biogeochemical and physical-chemical processes underlying ecosystem-atmosphere exchange 
processes and the emission of GHG’s the models are suitable to simulate GHG dynamics under 
diverse environmental and management conditions even outside the range they have been 
calibrated for. The robustness of process-based models had made them a widely used 
predictive tool in global change studies and they might be suitable as well to account for fine 
scale heterogeneity in the farming context, which is not possible with the current empirical 
models. 
 
The accuracy of a process-based model is related to errors due to model structure or errors due 
to the accuracy of data inputs, model parameter uncertainty and input uncertainty, respectively. 
Errors related to model structure are based on incomplete understanding and knowledge of 
the fundamental relationships that are driving GHG production and consumption processes in 
soils, variation in ways to describe underlying processes, and fluxes at the soil-atmosphere 
interface and the representation of them in the model.  These errors can be quantified 
statistically by comparing the model’s predicted GHG fluxes to measured GHG fluxes; for 
instance, with correlation coefficients. Errors related to input uncertainty take place because the 
input data describing a particular system is not well known. This may be particularly 
problematic in developing countries when the detailed climate, soils, and land use data are not 
available at a high degree of resolution. Parameter uncertainty can be estimated using Bayesian 
calibration and Monte Carlo simulations (e.g. Van Oijen et al., 2011; Rahn et al., 2011).   
 
Process-based models are available for the majority of biological GHG sources and sink but are 
mostly sectorial. For instance models for predicting atmosphere-biosphere exchange of 
greenhouse gases and change of soil C and N stocks at ecosystem scale as well as models for 
livestock GHG emissions (e.g., Giltrap, Li, & Saggar, 2010; Thornton & Herrero, 2010). 
DAYCENT or Landscape DNDC (Haas et al., 2013) were developed to simulate biomass 
production and soil processes, including simulation of soil GHG fluxes and soil C/N stock 
changes, while the process based models simulate CH4 emissions from livestock and are mainly 
applied in the US and in Europe (Rotz et al., 2012; Duretza et al., 2011).  These models are 
reasonable when evaluating the soil carbon sequestration potential at large scales or emissions 
of N2O from monoculture fields (Babu et al., 2006), or changes in herd management (Pathak et 
al., 2005; Bryan et al., 2013; Perlman et al., 2013) but perhaps less so when trying to 
characterize the GHG impacts of smallholder systems at the whole farm level or landscape scale 
accounting. 
 
Smallholder farming systems comprise multiple types of farming activities, often combining 
trees, animals, and crops in interconnected systems. Human management alters nutrients flows, 
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potentially mitigating or exacerbating emissions from parts of the system; applying sectorial 
process-based models to whole farms therefore may oversimplify the complex interactions 
taking place (Tittonell et al., 2009). As of yet, few modeling approaches have been adapted for 
farm level modeling of GHG impacts in mixed crop-livestock systems (Schils et al., 2007; Del 
Prado et al., 2013) and to our knowledge none have been applied to smallholder conditions of 
tropical developing countries (note Farm DESIGN model integrates coefficients into a process-
based model, Groot et al. 2012).  
 
As a first step the models need to be tested for most locations dominated by smallholder 
farming, which requires the availability of respective test datasets, since calibration and 
utilization of process-based models requires significant input and validation data. Data on site-
specific factors such as soil properties, cropping sequences, and fertilizer use are required, 
information which is often unavailable in many developing countries. In terms of enteric 
fermentation, the challenge is both a lack of information on animal numbers, species and 
breeds, feeding regimes, as well as the quality of feeds and forages even though the models 
are based on the presumption that the chemical reactions that occur in the rumen are fairly 
standard and tend to go to completion. However, emission factors, which have been obtained 
so far, don’t consider that livestock production in developing countries often involves periods 
of severe under nutrition with feed qualities being far lower than tested in experiments in 
OECD countries. It is obvious that there is a great need to generate data that can be used for 
model parameterization and evaluation for smallholder conditions. Until now, only limited 
information has been available to independently assess the validity of the emissions models for 
developing country conditions casting doubt on the reliability of any results generated from 
process-based models.  
 
Until process-based models have been adapted, calibrated and evaluated to account for 
diversity and complexity characteristic of smallholder farming, their use for GHG quantification 
at the whole-farm level in mixed systems such as the crop-livestock systems of Africa remains a 
challenge and requires a tight coupling of sectorial models and a whole system understanding. 
  
9.4 Conclusion  
The complexity and scale that is characteristic of smallholder farming and the general lack of 
data presents significant challenges for scaling GHG emissions with much certainty. Significant 
efforts and investments are needed to improve systems representation so that collected data 
are used to improve either empirical or process based models. Moreover, conducting detailed 
monitoring campaigns can address the challenge of complexity and heterogeneity, and provide 
data that can be used to scale up representative systems with greater confidence. 
 
Besides concerns over accuracy, technical demands in terms of data availability, model 
calibration and human capital all limit the utility of process-based models as a scaling method 
for GHG fluxes in agricultural systems of tropical developing countries at this time. However, 
given the costs of monitoring programs, it becomes an imperative to establish programs that 
can adapt and improve process-based models for quantification as they provide a means to test 
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hypotheses of mitigation options and GHG accounting. This will require a number of 
investments in climate monitoring, scientific capacity building, and GHG measurements to 
evaluate the models for smallholder conditions. We estimate that a 10 year program of 
targeted measurements—those for key sources and sinks spanning heterogeneous conditions—
is needed before use of process-based models becomes a viable solution for GHG 
quantification in smallholder systems at either farm or landscape scales. 
http://doi.org/10.1007/s10705-005-6111-5 
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Figure captions 
 
Figure 1. Illustration of a nested hierarchy. Regions (East Africa) can be disaggregated to 
landscapes (natural forest, communal lands, and agriculture) to farms (mixed crop-livestock) to 
fields (cabbages). 
 
Figure 2. Comparison of measured vs. predicted soil emissions based on two GHG calculators 
(Cool Farm Tool and EX-ACT) in tropical developing farming conditions. This graph shows that 
empirical models consistently overpredict fluxes, especially when fluxes are low (Richards et al. 
in review). 
 
Figure 3. Uncertainty of activity data inputs into a whole-farm accounting approach used in 
Western Kenya (Seebauer, 2014). Uncertainty depends on the farm activity in question and 
ranges from 10-20% for crop residues inputs up to greater than 80% with on-farm tree biomass. 
Data were collected by survey and colors represent different farm types. 
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Region' Landscape' Farm' Field'



	
   14 

 
 
 
Figure 2 
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Table 1. Conceptual framework of select scaling methods. Based on Ewert et al. (2011) 
 
Scaling method Graphical representation Opportunities Challenges GHG example 

MANIPUTLATION OF DATA 
Extrapolation and singling out 

 

Simple Heterogeneity in inputs are 
neglected 

Tully et al. in prep 

Aggregation and 
disaggregation  

 

Spatial heterogeneity is 
considered  

Need to have hypotheses about 
underlying drivers of input data 
heterogeneity 

Rufino et al. 
Chapter 2 

Aggregation/averaging 
(Stratified input data) 

 

Less computationally 
intensive because of 
averaged input data 

Averaging input data may 
compromise modeling efforts 

Bryan et al. 2013, 
Li et al. 2005 

Aggregation/averaging 
(Stratified output data) 

 

More accurate representation 
of heterogeneity 

Data and simulation intensive 
which limits applicability at scale 

De Gryze et al. 
2010 

MANIPULATION OF MODELS 
Modification of model 
parameters 

 

Uses existing models  Fine scale model parameters 
may be inappropriate for larger 
scales 

 

Simplification of model 
structure 

 

Relies on understanding of 
known fundamental 
relationships  

Subject to availability of data 
and understanding of processes 

Perlman et al. 
2013, Spencer et 
al. 2011 

Derivation of response 
function or coefficients 

 

Simplifies process-based 
model output to summary 
function 

Output based on   

 

Extrapola)on+

Singling+out+

Aggrega&on)

Disaggrega&on)

Model&

Model&
Model&
Model&
Model&
Model&

Model&

Parameter&

Model&

Summary&model&

Model&

Responses&

Model&
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Table 2. Geographically averaged input data was used to run a process-based model 
(RUMINANT) to predict changes in emissions and revenues with changing diets under two 
scenarios (Bryan et al. 2011).  
 
	
   Baseline	
  diet	
   Improved	
  feeding	
  
District	
   Cost	
  of	
  CO2e	
  

emissions	
  (US$)	
  
Baseline	
  net	
  
revenue	
  per	
  L	
  
of	
  milk	
  (US$)	
  

Scenario	
   Cost	
  of	
  CO2e	
  
emissions	
  
(US$)	
  

Baseline	
  net	
  
revenue	
  per	
  L	
  of	
  
milk	
  (US$)	
  

	
   	
   	
   Prosopis	
   	
   	
  
Garissa	
   6.53	
   0.33	
   1.5	
  kg	
   6.45	
   0.23	
  
	
   6.53	
   0.33	
   3	
  kg	
   6.16	
   0.18	
  
	
   	
   	
   Desmodium	
   	
   	
  
Gem	
   7.77	
   0.11	
   1	
  kg	
   7.52	
   0.26	
  
	
   	
   	
   2	
  kg	
   7.85	
   0.23	
  
	
   	
   	
   Napier	
  grass	
   	
   	
  

Mbeere	
   9.64	
   0.04	
   2	
  kg	
   9.94	
   0.16	
  
	
   9.64	
   0.04	
   3	
  kg	
   9.90	
   0.15	
  
	
   	
   	
   Hay	
   	
   	
  
Othaya	
   9.57	
   0.15	
   2	
  kg	
   9.68	
   0.16	
  
	
   9.57	
   0.15	
   4	
  kg	
   9.61	
   0.11	
  
	
   	
   	
   Grevillia	
   	
   	
  

Njoro	
   9.06	
   0.14	
   1	
  kg	
   9.61	
   0.19	
  
	
   9.06	
   0.14	
   2	
  kg	
   10.63	
   0.19	
  
 
 
 
 
 
 
 


